
Session Code: AR. 10

How to Partition and Layer a
Software Application

Michael Stiefel
Reliable Software, Inc.
www.reliablesoftware.com

The Problem

Software today cannot be rewritten as
hardware, requirements, and
technologies change.

The Consequences of Failure

Applications will no longer be used.
Businesses will not be competitive.
Customers will not be happy.
You will not find new work.

The Solution

Minimize consequences of software change.
Architect and design to evolve parts of an

application independently.

Partitioning and Layering decouple
parts of an application.

Permits

Modifying part of an application without
impacting other parts

Unit tests to validate changes to an
application independently

How do you partition and layer an
application?

Interfaces vs. Inheritance

Classes are not Types
Class inheritance is not Interface

inheritance
"Program to an interface, not an

implementation."

Composition vs. Inheritance

Inheritance is white box reuse
Composition (association) is black box

reuse
"Inheritance breaks encapsulation."
"Favor object composition over class

inheritance."

Coupling

Distinguish Essential Coupling
Remove Inessential Coupling

Partitioning and Layering

Remove Inessential Coupling due to
programming artifacts to minimize the
impact of change

Cannot remove the Essential Coupling
based on required behavior or semantics

Electrical Analogy

Wall socket interface minimizes the
inessential coupling due to the physical
shape of plugs and appliances

An interface cannot remove the essential
behavioral coupling of voltage and
amperage of standard current

A transformer is a pattern to modify the
behavior to minimize effect of the essential
coupling.

Object Oriented Design
Principles

• Interface Based Design
• Use of Composition
• Single responsibility
• Patterns such as Facades
• Dependency Inversion
• Factories

Demos

Illustrate through a series of demos

For More Information
Design Patterns, Erich Gamma, et. al.

Section 1.6, Chapter 3, Chapter 4 Façade Pattern
Domain-Driven Design, Eric Evans

Chapters 4, 6
Patterns of Enterprise Application Architecture, Martin Fowler

Chapters 1-3, 13, 18
Working Effectively with Legacy Code, Michael Feathers

Summary

Partitioning and layering are achieved through a
mixture of design and programming techniques.

Partitioning and layering minimize the impact of
change on an application.

Partitioning and layering allow you to build of unit
tests to validate the software as changes are
made.

Evaluation form

Vul je evaluatieformulier in en
maak kans op een van de
prachtige prijzen!!

Fill out your evaluation form
and win one of the great
prizes!!

Session Code: AR 10

	How to Partition and Layer a Software Application
	The Problem
	The Consequences of Failure
	The Solution
	Slide Number 5
	Permits
	Slide Number 7
	Interfaces vs. Inheritance
	Composition vs. Inheritance
	Coupling
	Partitioning and Layering
	Electrical Analogy
	Object Oriented Design Principles
	Demos
	For More Information
	Summary
	Evaluation form

